

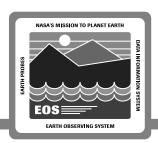
Data Server Overview Mark A. Huber

Maik A. Hubei

mhuber@eos.hitc.com

ECS Release A SDPS/CSMS Critical Design Review 16 August 1995

Data Server Subsystem Agenda


- Progress/Changes Since PDR
- Design Drivers and Approaches
- Subsystem Architecture
- Hardware Analysis and Design Overview
- SDSRV CSCI
- DDSRV CSCI
- STMGT CSCI
- DDIST CSCI

Data Server Subsystem Overview

- Stores and maintains earth science and related data types
- Advertises data types and services it provides against this data
- Provides data results via electronic transfer or physical media
 - Electronic method offers "push" or "pull" over network
 - Variety of physical media supported

Data Server Design Approach

 Formal OMT • Design Object Model • AHWGP Input **Object Model Design** Dynamic Model Ops Workshop L4 validation • Interface meetings • L4 mapping • Design Telecon **Feedback** Core Data Server Operator GUIs (ongoing) **Prototype** • NAS **PDR Design DSS CSCIs** -- Revisions to existing **HW and SW components COTS Evaluation** -- Phasing of capabilities **Trades** AMASS • Robotics and 3490s SGI Servers Technology Studies Working Storage DSS Configuration • OO mechanism, OODCE Reused DS studies Lessons Learned from PDR 706-CD-001-001 Day 3 MH1-4

Major Activities Since PDR System Implementation

	Objective	Related Documents	Results
Network Attached Storage (NAS) Prototype (T-8 Scalability and Maintainability of Archives)	Explore potential application of NFS front ended disk servers within architecture.	NAS Prototype Report	Conclusion that small NFS front ended servers are not applicable. Generated test cases and tools for advanced prototype.
Core Data Server (CDS) Prototype (T-4 COTS HSM) (T-5 Cost Effective Storage)	Explore crucial aspects of the server design, including COTS encapsulation.	CDS Prototype Plan	Valuable insights and confirmations of design decisions.
Working Storage Study	Evaluate and document staging and internal DSS data flows.	Working Storage Study	Coordinated data flows between subsystems. Study to be updated with Release B flows and approaches.
Data Server Subsystem Configuration White Paper	Provide single concise source for sizing and implementation documentation for DSS.	Data Server Subsystem Configuration WP	White paper material used in generation of DID 305 volumes.
Hardware Procurements	Provide necessary hardware for CDR prototypes and post CDR development.	Contract Vehicles	Target environment available to test system approaches at scale.

Major Activities Since PDR S/W Implementation

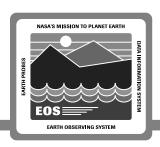
	Objective	Related	Results
		Documents	
Sybase/SQS Release A	Work with vendors to	SQS	Cost effective contract/team
Approach	negotiate a cost	Functional	put in place that will provide
(T-7 Data Base	effective solution to the	Specification	for timely Release A solution.
Management Systems)	spatial data base query	_	
	challenge.	Contract	
		Vehicle	
2nd Source DBMS	Mitigate risk by providing	DBMS RFP	6 vendors are responding to
Evaluation	for cost effective and		the request. Favorable results
	schedule compatible		look promising.
	DBMS fall back option.		
Document Data Server	Evaluate requirements	Document	Prepared for procurement
	for Doc Data Server	Data Server	activities.
	solution.	Requirements	
		-	
AMASS Purchase and	Reduce FSMS risk via	Contract	Core Data Server Prototype is
Installation	experience with scaled	Vehicle	ongoing.
	product used in		
	architecturally specific		Experiences gained to date
	manner.		show need to work closely
			with vendor on some possible
			performance enhancements.

Consistency From PDR

- General Architecture Consistent
- Major Data Flows Unchanged
- Design Philosophies Consistent
 - Service Based Design (ESDTs)
 - Distributed Objects
 - Mostly Data Driven
 (Release B Scheduler Possible for Resources)
 - COTS Insertion Points Unchanged
 - Sizing approaches not significantly different

Major Changes Since PDR

CSS Integration


- Distributed Objects for Interfaces
- OODCE "Factory" Model
- COTS Selections Made and Integrated into Design
- CSCs Have Been Realigned
- STMGT Responsible for Resource Management, DDIST Relieved of this Function
- DDSRV Loosely Coupled to SDSRV Design

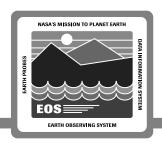
Design Drivers/Approaches

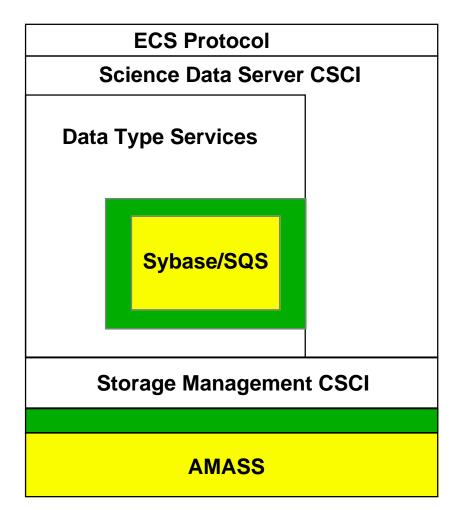
- Policy Neutral
 - Used at different sites in different ways
 - Tunable and Reconfigurable
 - "We deliver a tuned system and provide tools. The DAACs may use them uniquely."
- Support of Heterogeneous Data Types
 - Granules may be made up of many "parts"
 - "Parts" must be stored, linked, and presented to the requestor as a single granule
- Support of Massive I/O and Storage

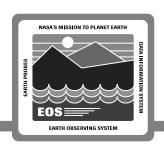
Data Server Subsystem Implementation Concepts

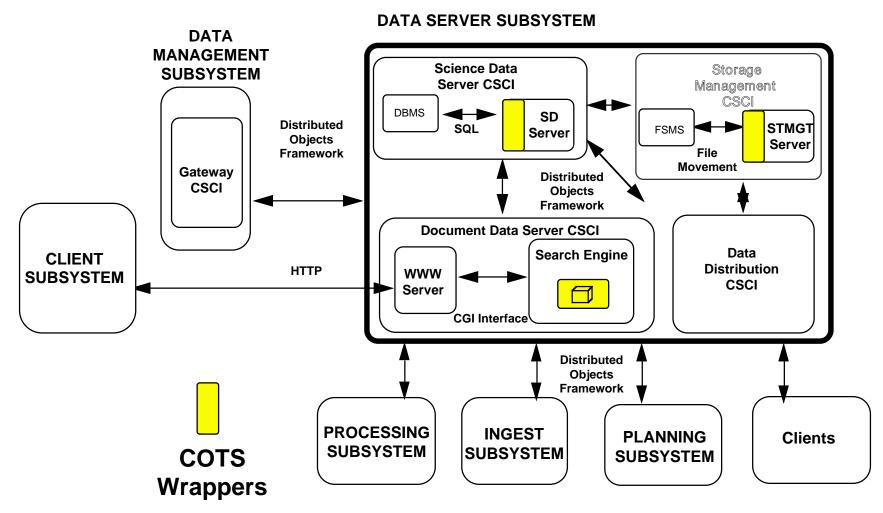
- System Level Concepts
 - Store Data According to Access
 - Insert and Acquire Flows Separate
 - Architecture of Subsystem Cleaves along API Lines
- System Software Concepts
 - Consistent Data Access and View
 - Storage Methods Hidden/Abstracted From User
 - Encapsulation of OTS
 - Stateful Connections
- Hardware Concepts
 - Horizontal Scaling
 - Sizing Cognizant of Release B Transition

Data Server Subsystem CDS Prototype Scope

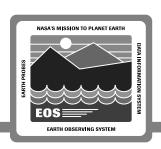

- PW1 Data Sets
- Granule File Inserts
- Stateful Connections
 - Working Collection
- Temporal Search
- Electronic Acquires
 - Files staged to Pull space
- Encapsulation of COTS
 - Wrappers defined and implemented


Data Server Subsystem Context




COTS Reference Architecture

Data Server Subsystem Software Architecture



Data Server Subsystem Primary CSS/MSS Services

- MSS Logging
 - User ID, request, request state, data destinations, Size of distributions, etc.
- MSS UserProfile
- Life Cycle Services
 - Startup, shutdown, error coordination
- Asynchronous Notifications and Callbacks
- File Distribution Services (FTP)

Data Server Subsystem Common Scenario Review

- Data Insert Operation
 - Data Arrival
 - Data Check
 - File Storage
 - Inventory/Metadata Update
- Access and Search
 - Access
 - Search
 - Browse
- Data Acquire
 - Electronic Acquire